Prominence scales guide incremental sentence comprehension in Georgian

Prominence scale misalignments (e.g. inanimate subjects) often trigger special grammatical phenomena. SPR data from a split-ergative language show that the parser makes fine-grained predictions while navigating incremental ambiguities in order to avoid positing role-animacy mismatches.

Prominence scales are relevant for grammar \& parsing

- Some grammatical categories (syntactic role, animacy, etc.) can be hierarchically arranged into prominence scales $[1,2]$.

Role	Animacy
Subject (su)	Human (${ }^{\text {a }}$)
Ind. Obj. (10)	Animal (${ }^{\text {a }}$)
Dir. Obj. (00)	Inanimate (¢)

- Grammars often treat structures with misaligned scales in a special way, across many languages \& phenomena. - Take differential object marking in Persian [2]. Low-prominence objects like Dos are unmarked (1); high-prominence objects like - Dos are associated with special morphology ('DOм') (2).
(1) medâdi xarid. \quad 앙 pencil bought
He bought a pencil. He bought a pencil.' Do No DOM
 Scales are
Misaligned:
DOM appears
- Prominence scales also shed light on syntactic processing. Parsers seem to predict aligned scales as much as possible, and misaligned scales can cause processing difficulty [3]
And indeed, for psycholinguistic theories like eADM [3,4], prominence scales feature prominently.
- However, crosslinguistic investigation is necessary to better understand just how the parser uses which scales.

Georgian split ergativity causes parsing challenges

- Georgian ${ }^{4}$ is a scrambling SOV language with null pronouns and (more unusually) split-ergative case [5].
- Arguments appear in different cases across different tenses (3), and cases differ in how many roles they are compatible with (4)

- Due to these properties, incremental ambiguities abound: e.g. is a preverbal DAT argument the $\mathbf{S U}, \mathbf{I O}$, or DO?

> vunaxivar. epeper zesulin
= 'On Monday the child (su) saw me.'
miveci.
give:Past.1su/310 $=$ 'On Monday I gave it to the child (10).'
vnaxav. see:Fut. 1SU/3D0
$=$ 'On Monday I will see the child (Do).
parsing, an ambiguous - If scale alignment is prioritized during parsing, an ambiguous
argument's prominence (e.g., animacy) will influence its parse - Find human argument \rightarrow assign it highest unclaimed role. \circ Find inanimate argument \rightarrow assign lowest unclaimed role.

Testing how arguments' animacy affects their parse

- Two SPR studies: Exp = all human arguments, Exp =all inanimate
 - 42 paid participants in Georgia. Experiment conducted online, via Ibex Farm [6] - One session: $\mathbf{2 8}$-itemsets $\mathbf{+ 2 8}$-itemsets $\mathbf{+} \mathbf{4 2}$ fillers + comprehension questions (6) a. $[\mathbf{S O V}+\mathbf{E R G} /$ NOM + ? $]$
dges sṭumar-ma kera xuro gaaxara ketili sačukr-it. today guest-ERG blond carpenter.NOM gladden:PAST kind gift-INST "Today the guest gladdened the blond carpenter with a kind gift."
b. $[\mathbf{S O V}+\mathbf{N O M} / \mathbf{D A T}+$] $]$
dges sțumar-i kera xuro-s gaaxarebs ketili sačukr-it.
today guest-NOM blond carpenter-DAT gladden:FUT kind gift-NST "Today the guest will gladden the blond carpenter with a kind gift."
c. $\left[\mathbf{O S V}+{ }^{\text {ERG }} / \mathbf{N O M}+\right.$ - $]$
dġes sțumar-i kera xuro-m gaaxara ketili sačukr-it.
today guest-NOM blond carpenter-ERG gladden:PAST $\begin{array}{lll}\text { kind } & \text { gitt } \\ \text { gitl-NST }\end{array}$
"Today the blond carpenter gladdened the guest with a kind gift."
d. $\left[\mathbf{O S V}+\mathbf{N O M} /{ }_{\mathbf{D A T}}+\right.$ + $]$
dges sțumar-s kera xuro
gaaxarebs ketili sačukr-it.
today guest-DAT blond carpenter.NOM gladden:FUT kind gift-INST
"Today the blond carpenter will gladden the guest with a kind gift."
- Reading time results for Exp (sov vs. osv)

- Reading time results for Exp (sov vs. osv)

Incremental alignment of role \& animacy derives RTs

- A very simple theory accounts for the observed patterns. - Parse arguments by maximally aligning animacy and roles.

$$
\rightarrow \mathbf{s u} \text { if possible; else } \rightarrow \mathbf{1} \text { if possible; else } \rightarrow \mathbf{D O}
$$

$\rightarrow \mathbf{D}$ if possible; else $\rightarrow \mathbf{0}$ if possible; else $\rightarrow \mathbf{D}$

- Processing difficulty arise when reparses are necessary, or when role-animacy misalignments (like \rightarrow su) are unavoidable.
- Human reanalysis effect (seen at positions with thick black boxes below) - If NP1 is : the optimal parse is always SOV, since any case can be $\mathbf{S U}$ (4) - But this parse is foiled in OSV conditions, by NP2.ERG (6c) or the Verb (6d) \circ In (6b), a ditransitive parse avoids positing a ©o at NP2 — but the monotransitive verb foils this prediction.

	at NP1		at NP2		$\frac{\text { at Verb }}{\text { Parse © }}$		
	Parse ©	Predictions.	Parse ${ }^{\text {a }}$	Predictions			
(6a)			$\begin{array}{cc} \hline \hline \text { ©erg } & \text { !? } \\ \text { su } & \text { Nom } \\ \text { so } & \text { Do } \end{array}$	$\left.\begin{array}{c} \mathrm{VERE} \\ \text { PAST, } \mathrm{R} \end{array}\right]$	$\begin{gathered} \hline \text { Wing } \\ \text { su } \\ \text { su } \end{gathered}$	$\begin{gathered} \hline \hline \text { Nom } \\ \text { Do } \\ \text { Do } \end{gathered}$	$\underset{\substack{\text { vers } \\ \text { [PAST, RT] }}}{ }$
(6b)	$\begin{gathered} \text { ©nом } \\ \text { su } \end{gathered}$	¢dat	$\begin{array}{cc} \hline \text { NoM } & \text { dat } \\ \text { su } & 10 \\ \text { su } & 10 \end{array}$		$\begin{gathered} \text { ENom } \\ \text { su } \end{gathered}$		$\underset{\substack{\text { VERB } \\[\text { FUT, } \mathrm{VTR}]}}{ }$
(6c)				$\begin{gathered} \text { L!ERB } \\ {[? \text { PAST, TR] }} \end{gathered}$	$\begin{gathered} \text { ENom } \\ \text { Do } \end{gathered}$	$\begin{gathered} \hline \hline \text { Merg } \\ \text { su } \end{gathered}$	$\left.\begin{array}{c} \text { VERB } \\ {[\text { PAST, RT }} \end{array}\right]$
(6d)			$\begin{array}{cc} \hline \text { Dot } & !? \text { NOM } \\ 1 \\ \text { SU } & 1 \\ \hline \end{array}$	$\left.\begin{array}{c} \text { Perger } \\ \text { Rep } \end{array}\right]$		$\begin{gathered} \hline \hline \text { Nom } \\ \text { n? } 50 \end{gathered}$	

- Misalignment cost (seen at positions with thick gold boxes below)

ERG is surprising anywhere (6^{\prime} a, c) as it entails misaligned scales (isu).

- Inanimate reanalysis effect (seen at positions with thick blue boxes below) \circ In (6^{\prime} b), a ditransitive parse at NP2.dat avoids positing sut but the monotransitive verb foils this prediction.

	at NP1			at NP2		at Verb		
	Parse (e)	Predict	ions	Parse ${ }^{\text {(2) }}$	Predictions:		Parse ©	
(6'a)	$\begin{gathered} \text { !? ierg } \\ \text { su } \end{gathered}$	$\overline{\substack{\text { Enom } \\ \text { Do }}}$	$\left.\begin{array}{c} \text { Lereb } \\ \text { PAST } \end{array}\right]$	$\begin{array}{\|cc\|} \hline \hline \text { iexg } & \text { enom } \\ \text { su } & 1 \\ \text { sU } \end{array}$	$\begin{gathered} \text { verre } \\ \text { PAST, } \end{gathered}$	$\begin{gathered} \hline \hline \text { ieg } \\ \text { sug } \end{gathered}$	$\begin{gathered} \hline \hline \text { Mom } \\ \text { Do } \\ \text { Do } \end{gathered}$	$\underset{\substack{\text { PPASB } \\ \text { PPRT }}}{ }$
(6'b)	$\begin{gathered} \text { ©nom } \\ \text { DO } \end{gathered}$	$\begin{gathered} \text { ©erg } \\ \text { su } \end{gathered}$	verb PAST,TR]	$\begin{array}{\|cc\|} \hline \text { NoM } & \text { ©dat } \\ \text { Do } & 10 \\ \text { DO } & 10 \end{array}$		$\begin{gathered} 1 ? \text { nol } \\ !!50 \end{gathered}$		
(6'c)				ENOM !? erg DO SU	verb PPSST, TR]	$\begin{gathered} \text { ENom } \\ \text { Do } \end{gathered}$	$\begin{gathered} \hline \text { ierg } \\ \text { sU } \end{gathered}$	$\begin{gathered} \text { veRb } \\ {[\text { PAST,TR] }} \end{gathered}$
(6'd)	$\begin{aligned} & \hline \text { imat } \\ & \text { Do } \end{aligned}$	$\begin{gathered} \hline \text { Mom } \\ \text { su } \\ \text { su } \end{gathered}$	$\begin{aligned} & \text { VERB } \\ & {[\text { UT, } T \mathrm{P})} \end{aligned}$	$\begin{array}{\|cc\|} \hline \text { ©DAT } & \text { !énom } \\ \text { Do } & \text { SU } \end{array}$	verb [FUTTH		$\begin{gathered} \text { Nom } \\ 1 \\ \text { SU } \end{gathered}$	$\begin{gathered} \mathrm{VERE} \\ {[\mathrm{FET}, \mathrm{TR\mid}]} \end{gathered}$

Nearly all cues predicted to cause difficulty under an alignment theory (notated with !? in the above tables) correspond to observed RT slow-downs - strong evidence that the parser prioritizes prominence scale alignment. But a few questions remain open. - Why don't Dos and nom.sus trigger an obvious misalignment cost like ERG.SUs? - Does the parser really prefer positing ditransitive verbs over misaligned arguments? - No strong evidence that DAT in Georgian is strongly tied to DO, as [7] claim. Why not? - Do parsers ever posit intransitive structures? (Georgian has ERG, NOM, and DAT INTR.SUs,

