Comprehending verb finality and case ambiguity in real time

Steven Foley (University of Southern California), Lizi Baramidze (Independent Scholar), Tamar Kalkhitashvili (ISU), Natia Poniava (TSU), and Irakli Salia (TSU)

contact: foleys@usc.edu • more info: stevenrfoley.github.io

SCCC-3 • Ilia State University • Tbilisi, Georgia • October 2–4, 2023

Real-time sentence comprehension is rapid, incremental, and active

• Comprehenders don't wait for bottom-up linguistic evidence – they make **predictions**

Verb-final word order seems to pose a challenge to comprehension

- The verb unlocks the meaning of a sentence
- How do comprehenders predict NPs' semantic relations before encountering the verb?
- They rely on various **grammatical cues** (case, word order, animacy, etc.)

Some grammars make those cues **less reliable**

Georgian: split ergative case + flexible word order + null pronouns

	Subj _{ACT}	Subj _{NACT}	DirObj	IndObj	Subj _{EXP}	Obj _{STIM}
Series I (FUT)	NOM	NOM	DAT	DAT	DAT	NOM
Series II (AOR)	ERG		NOM			
Series III (PERF)	DAT			DAT/PP		

Some grammars make those cues **less reliable**

• This results in many incremental case ambiguities!

ექიმი doctor:NOM writer:DAT

მწერალს...

...გააჩერებს

stop:TR:FUT

"The doctor [AGT] will stop the writer [PAT]" = S-O-V word order

...გაუჩერებია

stop:TR:PERF

"The writer [AGT] has stopped the doctor [PAT]" = O-S-V word order

Some grammars make those cues **less reliable**

This results in many incremental case ambiguities!

ექიმი doctor:NOM writer:DAT

მწერალს...

...გაუჩერდა

stop:NACT:APPL:AOR

"The doctor [THM] will stop for the writer [BEN]" = S-IO-V word order

...გავუჩერე

stop:DITR:AOR:1AGT

"I stopped **the doctor** [PAT] for **the writer** [BEN]" = DO-IO-V word order

Today's goals

Present results of a reading-time study on Georgian case-role ambiguities

- Comprehenders' default predictions: NOM = Subject; DAT = Direct Object
- Indirect Objects are always hard to process
- O-S-V isn't hard; S_{DAT} isn't hard; but O_{NOM}-S_{DAT}-V is hard

Connect to typology and crosslinguistic sentence processing

- Why is verb finality so common, and so commonly associated with case morphology?
- Why are some cues more important for comprehension in some languages?

Roadmap

- 1. The Verb-Finality Problem
- 2. Background
- 3. Maze Experiment
- 4. Discussion

2. Background

- 2.1 Prominence and eADM
- 2.2 Previous Findings
- 2.3 Open Questions

2.1 Prominence and eADM

Prominence scales play central roles in grammar and processing

- **Animacy:** Human > Animal > Inanimate
- **Specificity:** Pronoun > Definite NP > Indefinite NP
- **Syntactic Role:** Subject > Direct Object > Indirect Object
- **Thematic Role:** Agent > Goal/Benefactor > Patient
- Case: Unmarked (NOM/ABS) > Dependent (ACC/ERG) > Oblique (DAT/LOC)
- **Linear Order:** Earlier > Later

Aissen 2001; Bornkessel-Schlesewky & Schlesewsky 2009

2.1 Prominence and eADM

eADM = a theory of sentence processing incorporating prominence scales

Bornkessel-Schlesewsky & Schlesewsky 2009

2.1 Prominence and eADM

Some crosslinguistic predictions of eADM, given ambiguous case marking

- Comprehenders are eager to identify canonical (high-prominence) agents
- Scales might be weighted differently across languages (Why/How?)
- When arguments are **more distinct** across scales, a sentence will be **easier** to process

2.2 Previous Findings

Skopeteas et al. 2012 on **NOM/DAT ambiguities** in Georgian

- Two acceptability judgement experiments manipulating word order and case; Dep. Var. = RT
- **Exp1**: $\{S_{NOM}/O_{DAT}, S_{DAT}/O_{NOM}\} \times \{S-O-V, O-S-V\}$; **Exp2**: $\{Exp_{DAT}/Stim_{NOM}, S_{NOM}/IO_{DAT}\} \times \{S-O-V, O-S-V\}$

2.2 Previous Findings

Findings of Skopeteas et al. 2012

Experiment 1: Series I vs. Series III

- Main effect of case: $RT(S_{DAT}/O_{NOM}) > RT(S_{DAT}/O_{NOM})$
- No effect of order: RT(S-O-V) ≈ RT(O-S-V)

Experiment 2: Class IV vs. Class II

• Class-Order interaction: $RT(IO_{DAT}-S_{NOM}-V) > RT(others)$

2.3 Open Questions

Methodological

• Can previous results be replicated with an on-line measure (e.g., in **reading times**)?

Theoretical

- What about across a wider array of argument structures (passives, ditransitives)?
- Interacting order, case, & theta-role scales why do they influence processing?

3. Maze Experiment

- 3.1 Design & Methods
- 3.2 Reading-Time Results

3.1 Design & Methods

Experiment overview

- Three substudies: (i) NOM-VERB; (ii) NOM-DAT-VERB; (iii) DAT-NOM-VERB
- 24 (i) or 32 (ii, iii) itemsets with 4-condition designs manipulating case & argument structure
- L-Maze methodology: SPR plus lexicality decisions
- 56 Georgians participated remotely, online via PCIbex
- A long experiment! Split into two sessions

3.1 Design & Methods

Sample itemset: NOM-DAT-VERB substudy

- (2a) **ექიმი მწერალს** გააჩერებს მსახიობის ეზოში. doctor:NOM writer:DAT stop:TR:FUT actor:GEN garden:in "**The doctor** will stop **the writer** in the actor's garden."
- (2b) **ექიმი მწერალს** გაუჩერებს **მსახიობს** ეზოში.
 doctor:NOM writer:DAT stop:DITR:FUT actor:DAT garden:in
 "**The doctor** will stop {**the writer**} for {**the actor**} in the garden."
- (2c) **ექიმი მწერალს** გაუჩერებია მსახიობის ეზოში. doctor:NOM writer:DAT stop:TR:PERF actor:GEN garden:in "**The writer** has stopped **the doctor** in the actor's garden."
- (2d) **ექიმი მწერალს** გავუჩერე მსახიობის ეზოში. doctor:NOM writer:DAT stop:DITR:AOR:1 actor:GEN garden:in "I stopped **the doctor** for **the writer** in the actor's garden."

 $= S_{NOM} - DO_{DAT} - V_{TR} - X_{GEN}$

 $= S_{NOM} - O_{DAT} - V_{DITR} - O_{DAT}$

 $= DO_{NOM} - S_{DAT} - V_{TR} - X_{GEN}$

 $= DO_{NOM} - IO_{DAT} - V_{DITR} - X_{GEN}$

3.2 Reading-Time Results

Key results

Main effect of Argument Structure:
 RT(DITR) > RT(TR) - verbs with IOs are hard

• Main effect of Case Mapping: $RT(DO_{NOM}) > RT(S_{NOM}) - If N1 is NOM, verbs licensing <math>S_{DAT}$ are hard

4. Discussion

- 4.1 Implications for Typology
- 4.2 Future Directions

4.1 Implications for Typology

SOV languages on WALS with...

- "No case" or "Exclusively borderline case" = 31
- at least 2 cases = **70**

Is verb-finality **prohibitively difficult** to process without case morphology?

- Georgian shows that case need not be be a particularly reliable cue
- Proto South Caucasian case: just as wacky as Georgian no strong pressure to simplify

4.2 Future Directions

Many more case & argument-structure ambiguities in Georgian to test

```
(3) ექიმი მე... ...გამაჩერებს / ...გავაჩერე / ...გამიჩერეს
doctor:NOM 1SG stop:TR:FUT:1DO stop:TR:AOR:1S stop:DITR:AOR:3PL.S:1IO
"The doctor'll stop me" "I stopped the doctor" "They stopped the doc for me"
```

Is case processed differently in simple clauses compared to relative clauses?

```
(4) ექიმს მწერალი გააჩერებს / ...რომელსაც მწერალი გააჩერებს doctor:dat writer:nom stop:tr:fut which:dat:rel writer:nom stop:tr:fut "...who the writer will stop _"
```

Conclusion

Key findings

Sentence Region

References

Aissen, J. 2001. Markedness and subject choice in Optimality Theory. *Natural Language and Linguistic Theory*, 21. • Bornkessel-Schlesewsky, I. & Schlesewsky, M. 2009. The role of prominence information in the real-time comprehension of transitive constructions: A cross-linguistic approach. *Language & Linguistic Compass*, 3(1). • Bornkessel-Schlesewsky, I. & Schlesewsky, M. 2014. Scales in real-time language comprehension: A review. In *Scales and Hierarchies: A cross-disciplinary perspective*, eds. Bornkessel-Schlesewsky, I., et al. De Gruyter.

- Ferreira, F. & Qiu, Z. 2021. Predicting syntactic structure. *Brain Research*, 1770.
- Forster, K., Guerrera, C., & Elliot, L. 2009. The maze task: Measuring forced incremental sentence processing time. *Behavior Research Methods*, 26(3).
- Harris, A. 1985. Diachronic Morphosyntax: The Kartvelian Case. Academic Press.
- Inoue, A. & Fodor, J. D. 1995. Information-paced parsing of Japanese. In *Japanese Sentence Processing*, eds. Mazuka, R. & Nagai, N. Psychology Press.
- Skopeteas, S., Féry, C., & Asatiani, R. 2009. Word order and intonation in Georgian. *Lingua*, 119. Skopeteas, S., Fanselow, G., & Asatiani, R. 2012. Case inversion in Georgian: Syntactic properties and sentence processing. In *Case, Word Order, and Prominence*, eds. Lamers, M. & de Swart, P. Springer. Zehr, J. & Schwartz, F. 2018. PennController for Internet Based Experiments (IBEX).